

Treatment of N-Nitrosodimethylamine in Groundwater Using a Fluidized Bed Bioreactor (FBR)

Todd S. Webster, Ph.D., P.E. (Envirogen Technologies, Inc.), Paul B. Hatzinger, Ph.D. (Shaw Environmental, Inc.) and Michael Zigmond (NASA WSTF)

INTRODUCTION

- N-nitrosodimethylamine (NDMA) is a byproduct of liquid rocket fuels, disinfection processes, and some IX resins.
- It is completely miscible in water with low volatility.
- NDMA is a known carcinogen. California has a 10 ng/L action level and a 3 ng/L public health goal.
- Sites include DOD and NASA facilities and contractors including White Sands Test Facility and Aerojet.
- Typical remediation involves pump and treat with UV, but this approach is expensive due to high energy usage.

PRIOR RESEARCH Pure Culture Studies

Degradation of NDMA using the propanotroph Rhodococcus ruber ENV 425 was successfully demonstrated to < 2 ng/L. The pathway was also established.

H₂C

H₃C

N-N=O

Laboratory Membrane Bioreactor (MBR)

- NDMA was cometabolized in a membrane bioreactor (MBR) from typical groundwater concentrations (i.e., 1-80 µg/L) to low part-per-trillion levels. High levels of TCE inhibited performance
- · R. ruber was shown to develop an extensive biofilm that may be highly suitable for optimal performance in a fluidized bed bioreactor (FBR).

NDMA Treatment by R. ruber ENV425 in a Laboratory MBR

PROJECT OBJECTIVES

- To demonstrate and validate the use, performance, and cost-effectiveness of an FBR for the treatment on NDMA laden water to low part-per-trillion levels.
- · The success of the demonstration is contingent on validating the performance at a system hydraulic residence time (HRT) of less than one hour while achieving effective NDMA removal.
- A six month FBR bench-test was conducted using water that mimics the WSTF groundwater contaminated with NDMA to determine pilot-scale feasibility. This study included.
 - Establishing ENV425 NDMA removal kinetics in a laboratory FBR.
- Evaluation of short-term feed and electrical pump failure/system restart scenarios. · Co-contaminant removal performance and effects on NDMA removal performance
- · Pilot-study at WSTF in field to follow based on effective bench-scale study

Existing Full-Scale FBR Installations (50-5000 GPM)

FUNDAMENTALS OF FBR OPERATION

- · The FBR is a bottom loaded system
- The settled granular activated carbon bed is measured and then hydraulically expanded approximately 30%.
- Contaminated feed water is added to a water recycle line along with an electron donor (propane), oxygen, and a nutrient solution (phosphate/urea blend). Per a volumetric balance, the volume of water entering at the feed exits the top of the
- FBR from the effluent line. As the propane is degraded and the NDMA is cometabolized, biomass attaches onto the
- carbon and the bed expands to 40-60% the settled bed height. Excessive bed growth is limited by biomass separators.

SIMULATED and REAL WSTF WATER

Reactor Design Criteria

- Diameter = 5 cm
- · Settled Bed Height = 40 cm
- · Hydraulically Expanded Bed Height = 52 cm · Expanded Bed Volume = 1350 ml
- Recirculation Flow = 1200 ml/min
- · Feed Flow = 65-70 ml/min
- Feed NDMA Concentration = 10-20 µg/L
- HRT = 20 min
- · Propane Flow = 1 ml/min (1.45 mg/min as TOC) Oxvgen Flow = 3-7 ml/min (4.0-9.2 mg/min)

NDMA REMOVAL IN THE **BENCH-SCALE FBR**

SUMMARY AND CONCLUSIONS

- Initial microcosm studies demonstrated that ENV425 could effectively degrade NDMA in the WSTF groundwater.
- The presence of TCE. CFC-11. CFC-21. and Freon-113 ar ug/L concentrations did not inhibit the NDMA treatment by ENV425 during the microcosm studies
- After bioaugmenting the bench FBR with ENV425, biological treatment of NDMA was clearly evident. FBR bed height increased concurrently.
- Treatment of 10-20 µg/L concentrations of NDMA was consistently demonstrated in the bench-scale FBR to less than 100 ng/L. NDMA was treated to less than 10 ng/L with optimized conditions:
- A 20-30 minute hydraulic residence time
- · An oxygen addition rate of 6-7 ml/min (7.9-9.2 mg/min)
- A propane addition rate of 0.6-0.8 ml/min (0.9-1.2 mg C/min) A diammonium phosphate addition rate of 0.58 ml/min at 88 mg/L
- A urea addition rate 0.58 ml/min at 176 mg/L
- Co-contaminant removal of NDMA and TCE was possible. No inhibition of NDMA treatment observed when TCF present at site concentrations (low ug/L).
- An FBR pilot-scale study is scheduled at WSTF Mid-Plume Treatment Facility in 2011-2012. The FBR is constructed and awaiting start-up.

• We wish to thank ESTCP for supporting this research.

